JEE previous year questions:

Chemical Thermodynamics-V

1. An ideal gas undergoes isothermal compression from 5m³ to 1 m³ against a constant external pressure of 4 Nm⁻². Heat released in this process is used to increase the temperature of 1 mole of Al. If molar heat capacity of Al is 24 J mol⁻¹ K⁻¹, the temperature of Al increases by

(Mains, 2019)

- A) 2/3 K
- B) 3/2 K
- C) 1 K
- D) 2 K

Ans: A)2/3 K

Explanation:

Work done on isothermal irreversible for ideal gas = $-P_{ext} (V_2 - V_1)$ = $-4 \text{ N/m}^2 (1 \text{ m}^3 - 5\text{m}^3)$ = 16 NmIsothermal process for ideal gas $\Delta U = 0$ so, Q = -W = -16 Nm = -16 J

Heat used to increase temperature of Al, $Q = nC_m\Delta T$ $16 = 1 \times 24 \times \Delta T$ So, $\Delta T = 2/3K$